

Biological Forum – An International Journal

7(2): 626-632(2015)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Genetic Variation in Iranian Germplasm of rapeseed (Brasica napus L.)

Sobhan Ataei*, Valiollah Mohammadi**, Farzad Javidfar*** and Abbas Ali Zali****

*M.Sc. in Plant Breeding. Master Expert of Dept. of Agronomy. Agriculture Org. of Qazvin. Qazvin-Iran.
**Associate Professor in Plant Genetics and Breeding. Dept. of Agronomy & Plant Breeding. Faculty of Agriculture College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
***Research Professor in Plant Genetics and Breeding.
Oilseed Research Dept. Seed and Plant Improvement Institute, Karaj, Iran.
***Professor in Plant Genetics. University of Tehran, Karaj, Iran.

(Corresponding author: Sobhan Ataei) (Received 08 September, 2015, Accepted 15 October, 2015) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Evaluation of genetic diversity among wild and crop plants population is necessary for protection, conservation and useful application of germplasms, identification of genetic content of important breeding traits related to breeding purposes. There are various techniques available, which allow study the genetic variability of crop germplasm; Morphological traits, total seed protein, isozymes and several types of DNA markers examples. The experiment was conducted at the research farm of the Tehran University in Karaj in simple lattice design 9×9 were planted. The number of days to the beginning of flowering, the number of days to the completed of flowering and the number of days to the end of flowering were evaluated. Hyola401 with 4680 kg/ha was the most high yielding variety and would most probably have high oil yield per unit area due to its great oil content.

Key words: Days to the beginning of flowering, day to the completed of flowering, day to the end of flowering

INTRODUCTION

Canola is one of the most important oil crops in the world (Bybordi, 2010). Winter rapeseed (Brassica napus L.) is an important agricultural crop, grown commonly for oil or biofuel production. After oil extraction, the high protein seed residue can be used as animal feed. Winter rapeseed is mainly cultivated in Europe, Asia, North America and Australia, but has a limited acreage in Turkey. Presently, over 50% of vegetable oil consumed in Turkey is imported from abroad. Rapeseed production has potential as an alternative income source for the Turkey producer. Although its production is still limited, this crop has large expansion possibilities. It is an alternative principally in areas where wheat (Triticum aestivum L.) is the only winter crop or in marginal areas for this cereal (Assare et al., 1995). Oilseed canola plant (Brassica napus L.) is an important agricultural crop grown primarily for its edible oil and the meal that remains after oil extraction has value as a source of protein for the livestock feed industry (Jensen et al., 1996). Canola container valuable fatty acids and amino acid required by the human body, with 40-49 percent and 35-39 percent protein (after oil extraction) and oil respectively. Canola (Brassica napus L.) is considered as an economically important crop of world. But erratic rainfall and scarcity of water for irrigation during the growing season significantly lowers its vield and quality. Water stress affects both vegetative and reproductive stages in canola. The effects of water stress were more severe during reproductive growth than vegetative growth in rapeseed (Ghobadi et al., 2006). Previous studies showed that drought stress significantly decreased the seed oil content of canola (Sinaki et al., 2007). One of the major problems to high yield and production is the lack of synchronized crop establishment in canola due to poor weather and soil conditions (Mwale et al., 2003). The seeds are occasionally sown in seedbeds having unfavorable moisture because of the lack of rainfall at sowing time (Heydecker and Coolbaer, 1977) which results in poor and unsynchronized seedling emergence (Mwale et al., 2003). The success in breeding program of a crop species largely relies to the presence of genetic diversity in the germplasm and knowledge about the characteristics of the genotypes and their genetic relationships (Moghadam et al. 2009). Evaluation of genetic diversity among wild and crop plants population is necessary for protection, conservation and useful application of germplasms, identification of genetic content of important breeding traits related to breeding purposes (Kersovich et al. 1992; Diers and Osborn. 1994; Hallden et al. 1994; Cruz et al. 2007). There are various techniques available, which allow study the genetic variability of crop germplasm; Morphological traits, total seed protein, isozymes and several types of DNA markers examples (Shengwu et al. 2003). The genetic base of oilseed rape (Brassica *napus*) is quite narrow due to its limited geographic range and intensive breeding (Girke et al. 2012).

627

Research on Brassica germplasm and evaluation of its genetic diversity could accelerate the efficient use of genetic variation through establishing a breeding programmer (Stokes et al. 2010; Harper et al. 2012). Heterosis in hybrids is based on genetic completion between divergent parents, so the information on genetic diversity could help breeders better understand the genetic structure of germplasm and to predict which cross combinations would produce good F1 hybrids (Yu et al. 2007). Breeders currently choose components for hybrid combinations based on desirable characteristics without any information about their affinity, although the genetic distance is a prerequisite for heterosis to a certain extent. Recently, numerous markers for description of genetic resources have been developed such as isozymes, storage proteins or DNA based markers (Curn 1995; Zhao & Becker 1998; Schlötterer 2004). At present, molecular methods have become essential parts of most studies on genetic diversity. Molecular methods are very useful for estimating features such as gene flow, genetic drift and degree of out breeding, while other marker systems may be very useful for studying adaptive variation (Rao & Hodgkin 2002). To ensure efficient rapeseed production breeders have aimed to produce highly yielding and high quality cultivars. The information on the genetic diversity in B. napus could help breeders and geneticists to understand the structure of B. napus germplasm and help them to predict which combinations would produce the best offspring. Rapeseed cultivars used in Europe are generally of very high quality, but some desirable traits are missing in European gene-pool. It was proved that Chinese lines contain some genes, which make production of hybrid seed easier without genetic manipulations. There are various techniques available, which allow study the genetic variability of crop germplasm. Morphological traits, total seed proteins, isozymes and several types of DNA markers are well known examples. DNA based markers provide powerful and reliable tools to reveal variations within crop germplasm and to study evolutionary relationships (Gepts 1993). Among molecular markers, random amplified polymorphic DNA (RAPD) has been employed in genetic research owing to their speed and simplicity (Welsh and McClelland 1990). RAPD analysis has been widely used in recent studies on Brassica crops: (1) for determining the genetic relationships between different related species (Demeke et al. 1992, Thormann et al. 1994, Ren et al. 1995), (2) for the identification of cultivars (Hu and Quiros 1991) and the percentage of hybridity (Marshall et al. 1994). Sufficient genetic diversity is very important for plants to survive in changing climate conditions, withstand diseases and pests, etc. Many molecular markers are used for studies of genetic diversity in Brassica: restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), simple sequence repeats

(SSR), sequence-related amplified polymorphism (SRAP), etc. (Halldén et al., 1994; Riaz et al., 2001; Negi et al., 2004; Hasan et al., 2006). RAPD markers are used for genetic diversity analysis of many plant species (Galovic et al., 2006; Vyšniauskiene et al., 2011; Zybartaite et al., 2011; Vyšniauskiene et al., 2013). One of suitable DNA based markers for genetic diversity studies is RAPD (Random Amplified Polymorphic DNA). This markers have a high potential in order to polymorphic evaluation in all race of plants and for identification and study of races is very valuable (Welsh et al. 1991). Although this method has low repeatability, but because of its simplicity and speed, it has been used extensively for variety identification, determination of genetic variability, relationship among the crop genotypes and construction of linkage maps (Young 2000; Jaroslava et al. 2002). ISSR or Inter Simple Sequence Repeat marker is another PCR-based marker. This marker has wide application for all organisms, regardless of the availability of information about their genome sequence (Shi et al. 2010). ISSR markers are more reproducible than RAPD (Thimmappaiah et al. 2009) and have been proven to be a simple and reliable marker system for many organisms, especially plants, with highly reproducible results and abundant polymorphisms (Machkour-M'rabet et al. 2009).RAPD and ISSR were used to assessment of genetic diversity in many studies. RAPD was used for evaluation of genetic diversity among different genotypes of B. napus and results confirmed that RAPD is a simple, cheep and fast method for evaluation of genetic diversity of B. napus (Fazeli et al. 2008). Shengwu et al. (2003) used RAPD markers for evaluation of genetic diversity of B. napus germplasm for China and Europe and reported the occurrence of a considerable genetic variation between Chines and European accessions. Jabbarzadeh et al. (2010) used ISSR markers for genetic diversity analysis of rose species and reported that ISSR markers were chosen because the technique is very simple, fast, cost effective, highly discriminative, reliable and require small quality of template DNA. Also, RAPD and ISSR markers were used together and result showed that the genetic variation among ash gourd inbred lines examined, herein, defined a marker array for the development of a standard reference for further genetic analysis, and the selection of potential parent for predicting hybrid performance and heterosis (Veerendra et al. 2007).

MATERIAL AND METHODS

In this study, 97 varieties of canola seed were prepared from seed and plant improvement institute oilseeds sector. The experiment was conducted at the research farm of the Tehran University in Karaj in simple lattice design 10×10 were planted. Composite soil sampling was made in the experimental area before the imposition of treatments and was analyzed for physical and chemical characteristics.

ACSN-1	Bristol	Eureka	Licord	Olpro	Rasmus	Talent
ACSN-3	Brown muster	Express	Lirandra	Opera	RGS-003	Taparoo
Adder	C.V. Stas	Fornax	Loras	Option-500	Roby	Tor
Agat	Calibra	Geranimo	Maluka	OR2-8/99	Ryder	Turner
Akamar	Cheyenne	Hayola330	Midas	Orient	Sedo	Ural
Alice	Cobra	Herald	Modena	oriental muster	Sinatra	Valesca
Ascona	Colvert	Hopper	Mozart	Orkan	SLM-046	VDH-8003-98
Astus	Consul	Hylite	NDE-078	Oro	Sonja	VDH-8003-98
Atilla	Dexter	Hyola 308	NSA-1	Parade	Starlite	Westar
Aviso	Digger	Hyola 401	NSA-2	PAU-C61	Sunday	Wotan
Banjo	Ebonite	Hyola 420	Okapi	Pf.6098	SW 5001	WW-559
Belinda	Elite	Hyola 60	Olano	PF7045/91(Sarigol)	SW High Level	Yantar
Bellini	Elvis	Jupiter	Olara	Premier	SW-C3160	Zarram(R/C)
Boomrang	Embleme	Kova	Olga	R.S.S-963	SWC-3-H-97	

Table 1: List cultivars in the first year.

Thinning operations to achieve the proper density of wintering and in the rosette stage was performed. To control weeds, plant cultivation was done in the early reproductive stage. Data collected were subjected to statistical analysis by using a computer program MSTATC and SAS. Based on the results of Correlation and stepwise regression, path analysis was performed using SPSS software and the direct and indirect effects traits were obtained. To describe the genetic diversity and group of societies based on the traits, genotypes NTSYS software using the method of classification of full correlation and similarity coefficient using the Euclidean distance as the similarity criterion were classified. The experiment was conducted at the research farm of the Tehran University in Karaj in simple lattice design 9×9 were planted.

Code	Variety	Code	Variety	Code	Variety	Code	Variety	Code	Variety	Code	Variety
1	ACSN1	14	Cobra	27	Herald	40	Mozart	53	Par ade	66	Sunday
2	Adder	15	Colvert	28	Hopper	41	Mustard	54	PA U-C61	67	SW 5001
3	Agat	16	Consul	29	Hylite	42	NDE- 078	55	Pf.6 098	68	SW High Level
4	Akamar	17	Dexter	30	Hyola 308	43	NSA-2	56	Sari gol	69	Talent
5	Atilla	18	Digger	31	Hyola330	44	Okapi	57	R. S. S-963	70	Taparoo
6	Aviso	19	Ebonite	32	Hyola 401	45	Olara	58	Ras mus	71	Turner
7	Banjo	20	Elite	33	Hyola420	46	Olpro	59	RG S-003	72	Ural
8	Bellini	21	Elvis	34	Hyola 60	47	Opera	60	Roby	73	Valesca
9	Bristol	22	Embleme	35	Kova	48	Option- 500	61	Ryder	74	VDH- 8003-98
1 0	B. Mustard	23	Eureka	36	Licord	49	OR2	62	Sedo	75	Wotan
1 1	CV Stas	24	Express	37	Lirandra	50	Orient	63	Sinatra	76	Y. Mustard
1 2	Calibra	25	Fornax	38	Midas	51	Orkan	64	Sinatram	77	Zarfam
1 3	Cheyenne	26	Geranimo	39	Modena	52	Oro	65	SLM-046		

Table 2:	List	cultivars	in	the	second	year.

RESULTS AND DISCUSSION

A. The number of days to the beginning of flowering Among the studied genotypes, genotypes number 23, 30, 59, 1, 32, 78 and 3 (155 day for genotype number 3 and 159.8 day for genotype number 23) lowest value was observed. In contrast, this trait for genotypes 66. 27, 73, 68, 8, 75, 19, 6 and 10 (185 day for genotype number 66 and 180 day for genotype number 10) highest value was observed.

S.O.V	df	The number of days to the beginning of flowering	The number of days to the completed of flowering	
R	1	390.45	367.51	426.97
Block	16	1.5883	3.7388	0.8927
Uncorrected treatment	80	83.0682**	76.0374**	100.04**
Error	64	1.9729	1.8465	2.0117
	*, **, ns: significant at	p<0.05 and p<0.01 and	non-significant, respecti	vely.

Table 3: Anova analysis of the rape seed.

	The number of days to the beginning of flowering		The number of days to th flowering	e completed of	The number of days to the end of flowering		
Genotype	Rank	Mean	Rank	Mean	Rank	Mean	
1	VWXY	157.5	BCD	163.36	PQ	179.25	
2	DEFGHIJK	176	ABCDEFGHK	181.35	CDEFGHIJ	199.5	
3	Y	155	CD	16197	PQ	179	
4	HIJKLMN	173.5	EFGHIJKLMNOPQRS	178.15	ABCDEFGHI	200.75	
5	IJKMNOP	171.75	KLMNOPQRSTUVW	175.32	ABCDEFG	201.75	
6	ABCDEFG	180	ABCDEFGH	182.23	ABCD	205	
7	JKMNOPQ	169.75	PORSTUVWX	173.69	ABCDEFG	202.5	
8	ABCDE	181	ABCDEF	183.07	ABCDEFG	202	
9	EFGHIJKLM	175	CDEFGHIJKLMNOP	180	ABCDEF	203	
10	ABCDEFG	180	ABCDEFG	182.79	AB	206.25	
11	QRSTU	163.75	TUVWXY	171.28	IJKLM	194.75	
12	CDEFGI	177	ABCDEF	183.15	ABCDE	204	
13	HIJKLM	172	FGHIJKLMNOPQRST	177.09	CDEFGHIJ	199.5	
14	IJKLMNOP	175.25	DEFGHIJKLMNOP	179.25	BCDEFGHI	200.5	
15	EFGIKM	171	TUVWXY	174.67	ABCDEFGHI	201	
16	DEFGHIJKL	175	ABCDEF	179.13	ABCDEF	203	
17	FGHIJKLM	175.75	CDEFGHIJKLMNO	180.51	ABCDEFGHI	201.25	
18	FGHIJKLM	174	DEFGHIJKLMNOPQRST	179.18	FGHIJK	197.25	
19	ABCDEFG	180	ABCDE	183.41	ABCDEFGHI	201.5	
20	HIJKMNO	172.75	IJKLMNOPQRSTUV	175.9	EFGHIJ	198	
21	EFGHIJKLM	175	EFGHIJKMNOPQRS	178.53	DEFGHIJ	199	
22	MNOPQR	168.75	LMNOPQRSTUVW	174.96	ABCDEF	203	
23	UVWXY	159.75	BCD	163.62	NO	187.25	
24	FGHIJKMN	174	EFGHIJKLMNOPQRS	177.79	ABC	206	
25	HIJKLMOB	173	NOPQRSTUVWX	174.5	ABCDE	204	
26	MNOPQQR	169.25	LMNOPQRSTUVW	174.88	DEFGHIJ	199	
27	AB	184	AB	186.8	ABCDEFG	201.75	

Any two means not sharing a common letter differ significantly from each other at 5% probability

B. The number of days to the completed of flowering

Among the studied genotypes, genotypes number 79, 59, 32, 78 and 3 (160.54 day for genotype number 79 and 161.97 day for genotype number 3) lowest value was observed. In contrast, this trait for genotypes 27, 73, 12, 8 and 49 (186.8 day for genotype number 27 and 182.01 day for genotype number 49) highest value was observed.

C. The number of days to the end of flowering

Among the studied genotypes, genotypes number 78, 32, 30, 31 and 3 (177.24 day for genotype number 78 and 179 day for genotype number 3) lowest value was observed. In contrast, this trait for genotypes 74, 41, 10, 60 and 46 (207.25 day for genotype number 74 and 202.25 day for genotype number 46) highest value was observed.

Ataei, Mohammadi, Javidfar and Zali

	The number to the begin flowering		The number of days to t flowering	he completed of	The number of days to the end of flowering		
Genotype	Rank	Mean	Rank	Mean	Rank	Mean	
28	EFGHIJKLM	.175	BCDEFGHIJKMNO	180.73	BCDEFGHIJ	200	
29	IJKMNOP	171.25	MNOPQRSTUVW	174.97	GHIJK	196.25	
30	UVWXY	159	BCD	163.35	PQ	178	
31	TUVWX	161	ABCD	164.28	PQ	178.5	
32	WXY	156.5	CD	161.2	Q	177.5	
33	STUVW	162	ZABCD	164.86	OP	183.5	
34	OPQRST	167	UVWXYZ	170.32	MNO	189	
35	JKLMNOP	170	OPQRSTUVWX	174.45	FGHIJK	196.75	
36	JKLMNOP	171.75	HIJKMNOPQRSTU	176.38	BCDEFGHIJ	199.75	
37	HIJKLMNO	173	EFGHIJKLMNOPQRST	177.48	BCDEFGHIJ	200	
38	HIJKLMN	173.5	CDEFGHIJKLMNOP	179.97	ABCDEFGHI	201.25	
39	HIJKLMNOP	172	JKMNOPQRSTUV	175.6	ABCDEFGHI	201.25	
40	RSTUV	163.25	VWXYZ	170.03	KMN	191	
41	DEFGHI	176.75	BCDEFGHIJKM	180.94	AB	206.25	
42	DEFGHIJK	176	BCDEFGHIJKLMN	180.86	ABCDEF	203	
43	JKLMNOP	171	JKMNOPQRSTUV	175.57	BCDEFGHIJ	200	
44	IJKLMNOP	170.75	KMNOPQRSTUVW	175.2	IJKM	194.75	
45	EFGHIJKM	175	EFGHIJKLMNOPQRS	178.12	FGHIJK	197.25	
46	CDEFGHI	177	ABCDEFGHIJKL	181.21	ABCDEFG	202.25	
47	EFGHIJKM	175	EFGHIJKLMNOPQRS	177.7	ABCDEFGHI	200.75	
48	PQRST	166.25	XYZAB	168.58	LMN	190	
49	DEFGHIJ	176.25	ABCDEFGHI	182.01	BCDEFGHIJ	200	
50	IJKLMNOP	171	MNOPQRSTUVW	174.68	BCDEFGHIJ	202.25	
51	KLMNOPQ	169.5	HIJKLMNOPQRSTUV	176.09	ABCDEFGHI	201	
52	FGHIJKMN	174	HIJKLMNOPQRSTU	176.3	KMN	191	
53	FGHIJKMN	174	EFGHIJKLMNOPQR	178.68	ABCDEF	203	
54	PQRST	166.25	QRSTUWX	172.86	DEFGHIJ	199	

Table 5: Comparison of different traits of canola varieties.

Any two means not sharing a common letter differ significantly from each other at 5% probability

Table 6: Comparison of different traits of canola varieties.

	The numb to the begin flowerin		The number of days to th flowering	ne completed of	The number of days to the end of flowering		
Genotype	Rank	Mean	Rank	Mean	Rank	Mean	
55	GHIJKLMN	173.75	HIJKLMNOPQRSTUV	176.02	EFGHIJ	198	
56	IJKMNOP	170.75	RSTUVWX	172.76	JKLM	194	
57	HIJKLMNOP	172	MNOPQRSTUVW	174.64	HIJKLM	195	
58	IJKLMNOP	171	KMNOQPRSTUVW	175.32	DEFGHIJ	199.25	
59	UVWXY	158.25	D	160.74	NO	187.75	
60	IJKLMNOP	170.5	KLMNOQPRSTUVW	175.15	ABCDEFG	202.5	
61	GHIJKLMN	173.75	EFGHIJKLMNOPQRS	177.61	DEFGHIJ	199	
62	HIJKMNOQP	172	HIJKLMNOPQRSTUV	176.24	HIJKLM	195	
63	IJKMNOQP	171.25	HIJKLMNOPQRSTUV	175.92	FGHIJK	197	
64	IJKMNOQP	171.5	HIJKLMNOPQRSTUV	176.04	FGHIJK	197	
65	NOPQRS	168	STUVWXYZ	172.28	ABCDEFGHI	201	
66	А	185	А	187.16	ABCDEFG	202	
67	BCDEFGH	178.5	ABCDEFGHIJ	181.84	DEFGHIJ	199	
68	ABCD	181.75	ABC	185.76	AB	206.25	
69	HIJKLMNO	173	EFGHIJKLMNOPQRS	178.17	DEFGHIJ	199	
70	PQRSTU	166.25	WXYZ	169.38	MNO	189	
71	JKLMNOP	171.75	JKLMNOPQRSTUV	175.76	CDEFGHIJ	199.5	
72	EFGHIJKM	175	BCDEFGHIJKLM	180.94	EFGHIJ	198	
73	ABC	183	ABCD	185.26	ABC	206	
74	DEFGHIJ	176.25	ABCDEFGHIJ	181.75	А	207.25	
75	ABCDEF	180.25	ABCD	185.13	ABCDEFGHI	201	
76	DUWX	176	CDEFGHIJKLMNO	180.31	NOPQ	200	
77	HIJKLMNO	173	IJKLMNOPQRSTUV	175.72	GHIJKL	196	
78	WXY	156.28	CD	161.17	Q	177.24	
79	UVWXY	158.18	D	160.54	NO	187.34	
80	EFGHIJKM	175.2	DEFGHIJKMNOP	179.2	BCDEFGHIJ	200.45	
81	HIJKLMNO	172.98	IJKLMNOPQRSTUV	175.69	GHIJKL	195.98	

Any two means not sharing a common letter differ significantly from each other at 5% probability

REFERENCES

- Asare, E., and D.H. Scarisbrick. (1995). Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (*Brassica napus*). *Field Crops Res.* 44: 41-46.
- Bybordi A. (2010). Effects of salinity on yield and component characters in canola (*Brassica napus* L.) cultivars. *Not Sci Biol.* 2: 81-83.
- Cruz VMV, Luhman R, Marek LF, Rife CL, Shoemaker RC, Brummer EC, Gardner CAC. (2007). Characterization of flowering time and SSR marker analysis of spring and winter type *Brassica napus* L. germplasm. *Euphytica* **153**: 43-57.
- Curn V. (1995). Acid phosphatase and leucine amino peptidase ribozymes as biochemical markers of homogeneity in oilseed rape androgen etic lines. *Plant Growth Regulation*, 16: 59-63.
- Demeke T., Adams R.P., Chibbar R. (1992). Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in *Brassica. Theor. Appl. Genet.*, **84**: 990-994.
- Diers BW, Oborn TC. (1994). Genetic diversity oilseed Brassica napus germplasm based on restriction fragment length polymorphisms. Theor. Applied Genet., 88: 662-668.
- Fazeli E, Shahriar IF, Samizadeh H, Bagheri A, Farsi M. (2008). Evaluation of genetic diversity among different genotypes of *Brassica napus* using Random Amplified Polymorphic DNA markers. *Pakistan Journal of Biological Sciences*, 23: 2629-2633.
- Galovi V., Mladenovi S. D., Navaluši J., Zlokolica M. (2006). Characterization methods and fingerprinting of agronomicaly important crop species. *Genetika*, **38**(2): 83-96.
- Gepts P. (1993). The use of molecular and biochemical markers in crop evolution studies. In: Hecht M.K. (ed.): Evolutionary biology. Plenum Press, New York, 27: 51-54.
- Ghobadi M, Bakhshandeh M, Fathi G, Gharineh MH, Alamisaeed K, Naderi A, Ghobadi V. (2006). Short and long periods of water stress during different growth stages of canola (*Brassica napus* L.). Effect on yield, yield components, seed oil and protein contents. *Agron. J.*, **5**: 336-341.
- Girke A., Schierholt A., Becker H.C. (2012). Extending the rapeseed gene pool with resynthesized *Brassica* napus L. I: Genetic diversity. Genetic Resources and Crop Evolution, **59**: 1441-1447.
- Hallde'n C, Nilsson NO, Rading IM, (1994). Evaluation of RFLP and RAPD markers in a comparison of *Brassica* napus breeding lines. *Theor. Applied Genet* 88: 123-128.
- Hallden C., Nilsson N. O., Rading I. M., Säll T. 1994. Evaluation of RFLP and RAPD markers in comparison of Brassica napus breeding lines. *Theoretical and Applied Genetics*, 88: 123-128.
- Harper A.L., Trick M., Higgins J., Fraser F., Clissold L., Wells R., Hattori C., Werner P., Bancroft I. (2012). Associative transcriptomics of traits in the polyploidy crop species *Brassica napus*. *Nature Biotechnology*, **30**: 798-802.

- Hasan M., Seyis F., Badani A. G., Pons-Kühnemann J., FriedtW., Lühs W., Snowdon R. J. (2006). Analysis of genetic diversity in the *Brassica napus* L. gene pool using SSR markers. *Genetic Resources* and Crop Evolution, **53**(4): 793-802.
- Heydecker W, Coolbaer P. (1977). Seed treatments for improved performance survey and attempted prognosis. Seed Sci. Technol. 5: 353-425
- Hu J., Li G., Struss D., Quiros C.F. (1999). SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed, *Brassica napus*. *Plant Breed.*, **118**: 145-150.
- Jabbarzadeh Z, Khosh-Khui M, Salehi H, Saberivand A. (2010). Inter Simple Sequence Repeat (ISSR) marker as reproducible and specific tools for genetic diversity analysis of rose species. *Afr. J. Biotechnol* 37: 6091-6095.
- Jaroslava A, Polakova K, Leisova L. (2002). DNA analysis and their application in plant breeding. *Czech J. Genet. Plant Breed* **38**: 29-40.
- Machkour-M'Rabet S, Hénaut Y, Dor A, Pérez-Lachaud G, Pélissier C, Legal L. 2009. ISSR (Inter Simple Sequence Repeats) as molecular markers to study genetic diversity in tarantulas (Araneae, Mygalomorpae). The Journal of Archnology 37: 10-14.
- Moghadam M, Mohammadi SA, Mohebalipour N, Toorchi M, Aharizad S, Javidfar F. (2009). Assessment of genetic diversity in rapeseed cultivars as reveald by RAPD and microsatellite markers. Africian Journal of Biotechnology, 14: 3160-3167.
- Mwale SS, Hamusimbi C, Mwansa K. (2003). Germination, emergence and growth of canola (*Helianthus* annuus L.) in response to osmotic seed priming. Seed Sci. Technol. **31**: 199-206.
- Negi M. S., Sabharwal V., Bhat S. R., Lakshmikumaran M. (2004). Utility of AFLP markers for the assessment of genetic diversity within *Brassica nigra* germplasm. *Plant Breeding*, **123**: 13-16
- Rao V.R., Hodgkin T. (2002). Genetic diversity and conservation and utilization of plant genetic resources. *Plant Cell, Tissue and Organ Culture*, 68: 1-19.
- Ren J.P., Mc Ferson J.R., Li R.G., Kresovich S., Lamboy W.F. (1995). Identities and relationships among Chinese vegetable *Brassicas* as determined by random amplified polymorphic DNA markers. J. Amer. Soc. Hort. Sci., **120**: 548-555.
- Riaz A., Li G., Quresh Z., Swati M. S., Quiros C. F. (2001). Genetic diversity of oilseed *Brassica napus* inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. *Plant Breeding*, **120**: 411-415.
- Schlotterer C. (2004). The evolution of molecular markers just a matter of fashion? *Nature Reviews Genetics*, 5: 63-69.
- Shengwu H, Ovesna J, Kera L, Kera V, Vyvadilova M. (2003). Evaluation of genetic diversity of *Brassica* napus by RAPD markers. Plant soil environ 3: 106-113.Shi A, Kantartzi S, Mmbaga M, Chen P. (2010). Development of ISSR PCR markers for diversity study in dogwood (Cornus SPP.). Agriculture and Biology Journal of North America 3: 189-194.

- Sinaki JM, Heravan EM, Ra AHS, Noormohammadi G, Zarei G. (2007). The effects of water deficit during growth stages of canola (*Brassica napus* L.). Americaneurasian J. Agri. Environ. Sci., 4: 417-422.
- Stokes D., Fraser F., Morgan C., O'Neill C.M., Dreos R., Magusin A., Szalma S. Bancroft I. (2010). An Association Transcriptomics approach to the prediction of hybrid performance. *Molecular Breeding*, 26: 91-106.
- Thormann C.E., Ferreira M.E., Camargo C.E.A., Tivang J.G., Osbron T.C. (1994). Comparison of RFLP and RAPD markers to estimating genetic relationships within and among Cruciferrous species. *Theor. Appl. Genet.*, 88: 913-980.
- Timmappaiah WG, Shobha G, Melwyn S. (2009). Assessmant of genetic diversity in Cashew germplasm using and ISSR markers. *Scientia Horticularae* **120**: 411-417.
- Veerendra KV, Behera TK, Munshi AD, Parida SK, Mohapatra T. (2007). Genetic diversity of Ash gourd (Benincasahispida (Thunb) Cogn) inbred lines based on RAPD and ISSR markers and their hybrid performance. *Scientia Horticulture* 113: 231-237

- Vyšniauskien R., Ran elien V., Žvingila D., Patamsyt J. (2011). Genetic diversity of invasive alien species Lupinus polyphyllus populations in Lithuania. Zemdirbyste- Agriculture, 98(4): 383-390
- Welsh J., McClelland M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res., 18: 7213-7218.
- Yong ND. (2000). Constructing a plant genetic map with DNA markers. In: Phillips RL, Vasil JK (Eds) DNA-based markers in plants. Kluwer Academic Publishers.
- Yu C., Leišová L., Ku era V., Vyvadilová M., Ovesná J., Dotla il J., Hu S. (2007). Assessment of genetic diversity of yellow-seeded rapeseed (*Brassica* napus L.) accessions by AFLP markers. Czech Journal of Genetics and Plant Breeding, 43: 105-112.
- Zhao J.Y., Becker H.C. (1998). Genetic variation in Chinese and European oilseed rape (*B. napus*) and turnip rape (*B. campestris*) analysed with isozymes. Acta Agronomica Sinica. 24: 213-220.
- Zybartaite L., Zukauskiene J., Jodinskiene M., Janssens S. B., Paulauskas A., Kupcinskiene E. (2011). RAPD analysis of genetic diversity among Lithuanian populations of Impatiens glandulifera Royle. Zemdirbyste-Agriculture, 98 (4): 391-398.